Beatrix: A Malicious Code Analysis Framework

Christian Wressnegger
christian@wressnegger.info

Abstract

Especially in recent years malicious codes (malware) and
the techniques used to bypass modern detection systems
evolved at a tearing speed. We believe that in research
a more advanced way of cooperation on malware de-
tection is needed to bring forward security in general.
Up to now there is no system which assists researchers
in doing so. We are working on bridging this gap and
present Beatrix as an analysis framework. It allows re-
searchers to focus on the development of new techniques
instead of bothering about visualization, testing environ-
ments or the publication and distribution of the final pro-
totypes. Especially simplifying the latter results in in-
creased availability of state-of-the-art developments oth-
ers may build on top of. For this purpose, we provide
a software framework which introduces a plug-in infras-
tructure, that breaks down the the detection process into
disjoint sub-tasks. Hence, it is not only possible to uti-
lize other prototypes but even single components of it
without forcing a special license or demand open source
implementations. The benefit for each individual devel-
oper arises from the reduced implementation effort for a
complete prototype, since the framework already takes
over significant parts for binary analyses.

[Input] [Dumper] [Exuactor] [Analyzer] [Formatter} [Output]

Figure 1: Framework structure

Structure

The Beatrix Framework splits up the task of malicious
code detection into the six categories shown in Figure 1.
The internal prossing scheme is as follows: we iterate
over the set of Inputs and pass each piece of input one by

one to the Dumper. The results of the Dumper are post-
processed by a number of Extractors or left as they are if
no Extractor is specified. Based on these results one or
more Analyzers perform the actual classification, which
again is optionally post-processed by a set of Formatters.
The final results are handled by at least one Output mod-
ule.

Inputs

The initial step of the detection process is to retrieve
some kind of input, i.e. the piece of binary data that
should be analyzed. Although, reading data from a given
resource or a file is an elementary task, it still enables
a broad range of interesting and reusable applications.
First of all, reading in a number of benign and malicious
files is used for most evaluations and, of course, is pos-
sible at this stage of the framework as well. One may
extend this, for instance, by retrieving the samples us-
ing shellcode and/or exploit generators. Alternatively it
is possible to take a more practical line and replace this
by a scanner which passes the files that just performed
specific system-level actions (network access, file access,
etc.) to the framework. Reading data from network is an-
other interesting scenario for testing methods in the field
of network intrusion detection systems.

Dumpers

The raw byte stream provided by the input layer is pro-
cessed and interpreted by a Dumper. In general this type
of modules provides verbose information about the in-
spected suspect. Hence, this is usually the point to op-
erate against obfuscation and stealth techniques, anti-
debugging and anti-virtualization, etc.

Dumpers are able to navigate through the provided
stream and therefore, it controls which bytes are pro-
vided next by the framework. To do so a Dumper mod-
ule only specifies the number of bytes which it processed

and the offset, where it wishes to start the next iteration.
This allows the implementation of overlapping analysis
of data or to perform a rollback in case the processing of
the Dumper failed for some reason. An example would
be the extraction of execution chains and the thereby nec-
essary disassembly step. If a byte sequence is detected
that does not represent a valid instruction, the starting
offset might have been wrong. In such a case the Dumper
tags the first byte as invalid and the next time the frame-
work calls the Dumper with the offset increased by one.
That way the logic and implementation effort for navigat-
ing and handling the streams are supplied by the frame-
work, but the supervision completely remains with the
module.

Extractors

Extractors are intended to filter the findings of the
Dumper in order to provide meta properties and occur-
rences. For this purpose they may draw first conclusions
and apply heuristics such as hit thresholds, clusters of
simultaneously or sequenced occurred events, etc. As-
suming, for instance, the Extractor receives a list of all
system calls invoked by the currently inspected suspect.
The aggregation of a sequence of GetProcAddress
and LoadLibrary calls to a meta property may act as
an indicator for Windows shellcodes.

A special property of this category is that it is possible
to order its modules, i.e. if an Extractor e; is executed
before another Extractor eo, then es is able to access the
results of e;. Thus, it is possible to develop more abstract
meta objects out of existing once over and over again. At
the end, all the results of the available Extractors and the
Dumper are passed to each Analyzer.

Analyzers

As the name implies, the actual analysis and classifi-
cation is done using these modules. Analyzers operate
on the pool of data provided by the Extractors and the
Dumper in order to trigger classification events when-
ever one occurs. Such an event consists of at least the
input specification (details on the underlying resource,
position within the stream, etc.) and time/ date of the
classification. The details about the actual classification
is up to the particular implementation of the Analyzer.

Formatters

Formatters are post-processors for Analyzers, or, to put
it another way, they are mediators between Analyzer and
Output modules. This category is intended to increase
the interoperability between the Beatrix Framework and
other tools, e.g. for processing the classifications. Many

systems use a common standard to provide that interop-
erability. Although we appreciate this movement, we use
Formatters to transform the internal representation to ar-
bitrary formats instead of relying on a single format. As a
result, external tools which might not be flexible enough
to parse different classification formats and did not make
an effort to implement that standard, still can be used.
However, due to this flexibility we still have the possibil-
ity to provide events in various standardized formats as a
Formatter module.

In case no proper module is specified, only the original
classification is passed to the Output layer.

Outputs

At the end a detector has to provide the final results. Next
to the most obvious scenarios, as for instance, writing to
log files or the standard output there are more advanced
variations which are often tedious to implement. For in-
stance, the interaction with other applications, as moti-
vated in the previous section, might be done by inter-
process communication or network. Furthermore, this
type of module is the only one which is designed to im-
plement a full featured graphical user interface (GUI).
Output modules only define the way data are handled.
Due to the Formatter modules, they are completely de-
coupled from the actual output representation. There-
fore, it is not necessary to modify an Output module im-
plementation in order to change the actual output.

Tooling

When talking about Beatrix (Project) one differentiates
between two major components: the Beatrix Detector
and the Beatrix IDE. Both are based on the Beatrix
Framework which in turn makes use of Beatrix Mod-
ules. The Beatrix Detector is a stand-alone application
which performs the actual detection process based on a
configuration file and its program arguments. This con-
figuration file specifies the individual plug-ins (so-called
Beatrix Modules) to use and contains their required pa-
rameters. Therefore, the Beatrix Detector represents the
“operational implementation” of the Beatrix Framework.
The set of tools for using this infrastructure is collec-
tively called the Beatrix IDE. It is intended to assist the
developer in composing an individual detector (the men-
tion configuration) from scratch. Furthermore, the IDE is
able to start these detector configurations in a debugging
mode (independent of the Beatrix Detector but sharing
the same code base — the Beatrix Framework). This de-
bugger allows one to inspect the data which are currently
processed within each plug-in used (no matter if third-
party or own developments) and navigate through their
execution.

Discussion

The framework at its current state of development is writ-
ten in the Java programming language. People are often
very critical concerning Java when doing implementa-
tions in fields of application where it usually matters to
have a low-level point of view and to keep an eye on ex-
ecution performance. However, we argued that Beatrix
is designed for prototyping and to try to get the bottom
of detection performance. Concerning this, Java seems
to be the optimal choice due to its capability to integrate
native libraries or almost arbitrary scripting languages.
Nevertheless, we clearly underestimated the value of the
general request to slip execution performance in proto-
typing as well. Due to this, we are rebuilding the frame-
work to fit this need, but simultaneously preserve the
concepts and ideas of flexibility we introduced. See the
next section for details.

Future and Current Work

We implemented a number of modules which cover the
most usual cases of application for input and output han-
dling: reading from single and lists of files, processing
of network streams, writing log files, listing classifica-
tion events in a simple GUI, etc. In the course of that we
worked on the integration of the MetaSploit Framework
[4] as a supplier for malware samples.

As a basic showcase we drew on the most basic malware
detection setup, namely a signature matcher. This show-
case was mainly developed to demonstrate the existing
modules for in- and output handling. This evolved from
the initial implementation via using different third party
signature databases through to the attempt to provide the
technologies used in the Clam AV [1] engine as module
for the framework. Another module we worked on is de-
signed to utilize the Linux ptrace debugging interface [6]
for the extraction of execution chains.

Furthermore, we are permanently evaluating the possi-
bility of integrating prototypes based on Beatrix in other
systems and applications, as for instance, the Snort IDS
[5]. At the moment especially in the mentioned example
of an intrusion detection system this proved to be con-
tradicting regarding execution performance. Directly re-
lated to this is our recent attempt to provide a low-level
implementation of the framework to meet the commu-
nity’s demands as mentioned in the previous section.
Therefore, we are forcing a C/C++ implementation of
the basic framework, i.e. we reverse our initial approach
of utilizing native libraries from within Java to utilizing
Java (among others) using a native build of Beatrix. We
expect a significant performance improvement for com-
putational intensive tasks and therefore, more acceptance
in the research community.

Related Work

High quality software products usually introduce some
kind of abstraction of their internal structures to keep
maintenance and future development easy. However,
they are mostly not intended to be extended externally.
Others have the capability to process plug-ins, as Beatrix
does, but only for one specific task. Those plug-ins allow
(third-party) developers to extend the product without
changing the actual product itself. We see an increasing
amount of such system in maleware/ security research as
well, as for instance Snort, the Anubis Project [3], etc.
However, Beatrix enables to fully specify its main be-
haviour (i.e. the complete detection process) by plug-
ins, though. Therefore, we take a similar line as, for
instance, the MetaSploit Framework. It allows users to
put together a shellcode, such that it fits their needs. One
is able to select the payload to use, the characters (byte
values) that are not permitted or the encoder to obfuscate
the resulting code. All these steps for generating a shell-
code are provided as (Ruby) modules and can be added
or removed by third-party developers without modify-
ing the framework. Hence, MetaSploit makes available
and specifies the infrastructure and outsources substan-
tial tasks to the framework. This exactly is the paradigm
we are following as well.

Availability

The complete Beatrix Project is free software under the
terms of the GNU Public License version 2 [2] with a
so-called classpath exception. That exception allows ex-
plicitly the usage of the framework in and with other soft-
ware without forcing a specific license of the final prod-
uct. The applications of the project, their source codes
and more detailed documentation for users and develop-
ers are available from the corresponding project website.

http://beatrix.sf.net

References

[1] CLAMAV TEAM. ClamAV. URL: http://www.clamav.com.

[2] FREE SOFTWARE FOUNDATION. GNU GENERAL PUBLIC LI-
CENSE version 2. URL: http://www.gnu.org/licenses/gpl-2.0.txt,
June 1991.

[3] INTERNATIONAL SECURE SYSTEMS LAB, ET AL. Anubis: Ana-
lyzing Unknown Binaries. URL: http://anubis.iseclab.org/, 2009.

[4] METASPLOIT LLC.
http://www.metasploit.com.

Metasploit™ Framework. URL:

[5] SOURCEFIRE, INC. SNORT. URL: http://www.snort.org.

[6] THE LINUX man-pages PROJECT. ptrace - pro-
cess trace. URL: http://www.kernel.org/doc/man-
pages/online/pages/man2/ptrace.2.html.

